Пример был направлен на пояснение α-риска, а не области применения T-теста, так как в своем первом сообщении Вы утверждали, что (α) – двусторонняя гипотеза, а (α/2) – односторонняя. Но Вы абсолютно правы, чтобы соблюсти все формальности, нужно было говорить не об абсолютной величине, а о средней по не нескольким наблюдениям.
Я добавил в таблицу графики, которые показывают α и α/2. Кстати, пока добавлял, заметил, что в исходном файле формула расчета коэффициентов подтягивала величину риска из строки α/2. Возможно, из-за этого возникла путаница? Буду рад, если повторите расчеты и отпишите.
Извините, та задача которую вы описали не имеет никакого отношения к распределению Стьютента. А это нарушает одно из условий применения коэффициента, которое описано в вашей статье. Задача которую я решаю: Мы проводим многократные измерения случайной величины, которая подчиняется закону распределения Стьюдента (это проверяется критерием Пирсона). И с доверительной вероятностью, как правило 95% и уровнем значимости 5%, ищем области в которых с заданной доверительной вероятностью находится истинное значение измеряемой величины. Именно к этой задаче относятся вышеприведённый схемы.
Я добавил в таблицу графики, которые показывают α и α/2. Кстати, пока добавлял, заметил, что в исходном файле формула расчета коэффициентов подтягивала величину риска из строки α/2. Возможно, из-за этого возникла путаница? Буду рад, если повторите расчеты и отпишите.
Задача которую я решаю: Мы проводим многократные измерения случайной величины, которая подчиняется закону распределения Стьюдента (это проверяется критерием Пирсона). И с доверительной вероятностью, как правило 95% и уровнем значимости 5%, ищем области в которых с заданной доверительной вероятностью находится истинное значение измеряемой величины. Именно к этой задаче относятся вышеприведённый схемы.